
What is Stable Diffusion?

Stable Diffusion is an AI model that creates images from text by starting with

pure noise (like static) and gradually removing the noise step by step until

the image matches the description. It learns how to turn noise into

meaningful images using millions of examples, combining deep neural

networks with attention mechanisms to understand both visual patterns and

text prompts.

Before starting, there are some topics we need to cover, so let’s start with

them.

KL Divergence

KL divergence (Kullback-Leibler divergence) is a concept in information

theory and probability that measures how different one probability

distribution is from another.

Think of KL divergence as answering the question: How much information is

lost if we approximate one probability distribution with another?

It quantifies how much one probability distribution Q differs from another

probability distribution P. The more different they are, the higher the KL

divergence.

Formula

The KL divergence between two distributions P and Q is given by:

Where:



• P is the true distribution (what the data really looks like)

• Q is the approximate distribution (what we’re trying to model)

• x represents the possible outcomes

What does it actually mean?

• If P(x) and Q(x) are identical, then:

• If Q is very different from P, the divergence will be large.

How is KL Divergence Used in Stable Diffusion?

In Stable Diffusion (and VAEs), KL divergence is used during the training

phase to:

1. Push the encoded latent space close to a normal Gaussian distribution.

2. Ensure that the noise added during denoising follows the prior

distribution.

The loss function often looks like:

More on this later

Jensen’s Inequality

Jensen’s Inequality tells us how a convex function (a function is convex if its

curve always bends upwards — like a bowl.) interacts with the average of

random variables.

In simple words:



where:

• X is a Random variable (like position, energy, or vibration)

• f(x) is a convex function

• E[X] is the average value of X (expected value)

• E[f(X)] is the average of the function applied to X

What all of this basically means is that if you first average the raw data and

then apply the function, you’ll always get less or equal information than if

you apply the function first and then average.

Markov chain

A Markov Chain is a mathematical model that describes a sequence of

events where the next state depends only on the current state — not on the

entire history of previous states.

Markov Chains are used whenever you need to model randomness over time

— especially in:

• Text Generation (like LLMs)

• Image Generation (like Stable Diffusion)

• Reinforcement Learning

• Time Series Forecasting

• Hidden Markov Models (HMMs) in speech recognition

Working

1. Forward Diffusion Process

• The forward process is like breaking down an ordered system into chaos.

• We gradually add Gaussian noise over T timesteps.

• At every step, the image becomes noisier.

We define a Markovian forward diffusion that gradually adds Gaussian noise

to an image x₀ over time t, creating a noised version xₜ. This process is

modeled as:



Where:

• x₀ → The original clean image

• xₜ → Noisy image at timestep t

• αₜ→ Noise scaling factor at timestep t

• N → Gaussian distribution

→ What is Markovian Forward Diffusion?

• A Markovian process simply means that the future state depends only on

the present state — not on the entire history.

• Mathematically:

So, the probability of xₜ only depends on the previous step xₜ₋₁, making the

process memoryless.

By leveraging the reparametrization trick, we can write the diffusion

process directly as:

→ What is reparametrization trick?

• In the forward diffusion process, we start with an image x0x_0x0, and

after T timesteps, it becomes pure noise:

• Now the whole game is about reversing this process.

• What we are actually training the model to do is predict the noise at each

step:



• But the catch is, the whole reverse diffusion process is stochastic

(random) because noise is involved at each step.

• If the process is random, how can the model be trained through

backpropagation?

• You cannot directly backpropagate through random noise sampling

because neural networks are deterministic — they can’t optimize

parameters through pure randomness.

That’s Where the Reparameterization Trick Comes In:

Instead of sampling noise directly like this:

We now reparameterize the noise:

Where:

• ϵθ(xₜ, t) is the deterministic neural network prediction.

• z∼N(0,I) is the pure Gaussian noise.

Now rewrite the whole diffusion equation like this:

Now the entire process becomes differentiable.

The randomness is pushed into the separate z term, which does not depend

on the model parameters.

Now, during backpropagation Only ϵθ(xₜ, t) gets updated, while the pure

Gaussian noise stays fixed.

→ Full Pipeline

1. Start with pure noise xₜ∼N(0,I)



2. For each timestep t:

• Predict the noise: ϵθ(xₜ, t)

• Sample new noise: z∼N(0,I)

• Reconstruct the clean image:

2. Reverse Diffusion Process

In the reverse process, we want to denoise the pure Gaussian noise step by

step until we regenerate the original data x₀.

The Reverse Diffusion Equation

The forward diffusion process follows this Markov chain:

The Reverse Diffusion Process is the exact opposite:

Let’s break this down

a. The Reverse Mean µθ(xₜ, t)

• The reverse mean is:

• We start with the noisy sample xₜ

• Predict what the noise should have been using the neural network

• Subtract the noise to get a slightly denoised version

• Scale everything back by the inverse diffusion factor

b. The Variance Σθ(xₜ, t)



• The variance controls how much randomness we inject at each step.

• For most diffusion models, it’s fixed as:

• Where:

The model can also predict this variance, but most papers keep it fixed.

Thus, the final reverse diffusion equation is:

Recap:

• Start with random Gaussian noise

• At each step, subtract the predicted noise (order from chaos)

• Add a little bit of fresh Gaussian noise (to maintain stochasticity)

• Repeat this for T steps

3. Variational Lower Bound & Training Objective

Given data x₀, we want to model the probability distribution:

But directly maximizing this likelihood is impossible.

Instead, we turn to Variational Inference — where we approximate this

likelihood using a Variational Lower Bound (VLB).

The full training objective is maximizing the log-likelihood of the data:



But we can’t compute this directly.

Instead, we derive a lower bound using Jensen’s Inequality:

This lower bound is called the ELBO (Evidence Lower Bound):

Let’s break this down

First, rewrite the joint probability of the entire Markov chain:

And the forward process is:

Now the ELBO becomes:

Now the ELBO is three separate losses:

→ Reconstruction Loss



The main loss is the Kullback-Leibler Divergence between the true forward

distribution and the predicted reverse distribution:

Finally, at the last timestep we compute Prior Matching Loss:

But since both are Gaussian, this KL divergence has a closed form:

This is so genius because:

• The model never predicts the image directly

• It only predicts the noise at each step

That’s why the entire training objective is:

The full loss is:

But the simple version (used in 99% of papers) is:

Example Walkthrough of Stable Diffusion

1. Dataset & Input Preparation

Let’s say we have a dataset of cat images x∈R³ˣ²⁵⁶ˣ²⁵⁶



2. Forward Diffusion (Markovian Process)

We gradually add Gaussian noise to the image in T=1000 steps using the

forward diffusion process:

where:

• βₜ is the noise schedule (small noise at the beginning, larger noise at the

end)

• t is the time step

• √(1 — βₜ) scales down the image

• βₜI is the Gaussian noise added at each step

Instead of sampling one step at a time, we can directly jump to any time step

t:

with:

Example:

Let’s say:

• βₜ=0.01

• t=100

• x₀ is an image of a cat

Then:



The noisy image becomes:

3. Reverse Diffusion Process (Model Training Objective)

Now the goal is to reverse the noise and recover the original image.

We train a neural network ϵθ(xₜ, t) to predict the noise at each step:

The denoising step is:

Where:

4. Training Objective (Variational Lower Bound)

The network is trained to minimize the simplified evidence lower bound

(ELBO):

This means the model is trained to predict the noise added at each timestep.

Example Training Step

Let,

• Image = Cat

• x₀ = Cat Image

• t = 500

• βₜ = 0.02



→ Forward Diffusion

→ Neural Network Prediction:

→ Loss Function

→ Gradient Descent

After training, we generate images starting from pure Gaussian noise:

• Start with xₜ∼N(0,I)

• Sample iteratively:

until t=0.

Conclusion

To summarize:

• Sample an image x₀ from the dataset

• Randomly choose a timestep t∼U(1,T)

• Generate noisy image:



• Predict the noise:

• Compute Loss:

So, this was it! Hopefully, you liked this in the next article, we’ll code this up

using PyTorch!


